

Exercise 1. We trivially have

$$|\langle \delta'_0, \varphi \rangle| = |-\varphi'(0)| = |\varphi'(0)|,$$

so the definition is satisfied with $C = 1$ and $m = 1$. We can also easily show that δ'_0 is a distribution of order 1, and it is easy to check that $\text{supp}(\delta'_0) = \{0\}$.

Exercise 2. By definition, we have $T_n \xrightarrow[n \rightarrow \infty]{} T \in \mathcal{D}'(\Omega)$ if and only if for all $\varphi \in \mathcal{D}(\Omega)$, we have

$$T_n(\varphi) \xrightarrow[n \rightarrow \infty]{} T(\varphi).$$

In particular, if $\psi = D^\alpha \varphi$, then $\psi \in \mathcal{D}(\Omega)$, which implies that

$$D^\alpha T_n(\varphi) = (-1)^{|\alpha|} T_n(D^\alpha \varphi) = (-1)^{|\alpha|} T_n(\psi) \xrightarrow[n \rightarrow \infty]{} (-1)^{|\alpha|} T(\psi) = (-1)^{|\alpha|} T(D^\alpha \varphi) = D^\alpha T(\varphi)$$

by definition de $D^\alpha T$.

Exercise 3. For all $\varphi \in \mathcal{D}(\mathbb{R})$, we have

$$T_n(\varphi) = \delta_{\frac{1}{n}}(\varphi) = \varphi\left(\frac{1}{n}\right) \xrightarrow[n \rightarrow \infty]{} \varphi(0) = \delta_0(\varphi)$$

as $\varphi \in C^0(\mathbb{R})$. Therefore, we have

$$T_n \xrightarrow[n \rightarrow \infty]{} \delta_0 \quad \text{dans } \mathcal{D}'(\mathbb{R}).$$

We have

$$\varphi(x) = \varphi(0) + \varphi'(0)x + O(x^2). \tag{1}$$

Therefore, we get

$$\frac{\varphi(x) - \varphi\left(\frac{x}{2}\right)}{x} = \frac{1}{2}\varphi'(0) + O(|x|),$$

which shows that

$$\begin{aligned} S_n(\varphi) &= n(T_n - T_{2n})(\varphi) = n\left(\varphi\left(\frac{1}{n}\right) - \varphi\left(\frac{1}{2n}\right)\right) = \frac{\varphi\left(\frac{1}{n}\right) - \varphi\left(\frac{1}{2n}\right)}{\frac{1}{n}} \\ &= \frac{1}{2}\varphi'(0) + O\left(\frac{1}{n}\right) \xrightarrow[n \rightarrow \infty]{} \frac{1}{2}\varphi'(0) = -\frac{1}{2}\delta'_0(\varphi), \end{aligned}$$

and finally, we have

$$S_n \xrightarrow[n \rightarrow \infty]{} -\frac{1}{2}\delta'_0 \quad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Exercise 4. 1. For all $\varphi \in \mathcal{D}(\mathbb{R})$, we have

$$\begin{aligned}\langle e^x \cdot \delta_0'', \varphi \rangle &= \langle \delta_0'', e^x \varphi(x) \rangle = \frac{d^2}{dx^2} (e^x \varphi(x))|_{x=0} = \varphi(0) + 2\varphi'(0) + \varphi''(0) \\ &= (\delta_0 - 2\delta_0' + \delta_0'')(\varphi),\end{aligned}$$

which shows that

$$e^x \cdot \delta_0'' = \delta_0 - 2\delta_0' + \delta_0''.$$

2. We have

$$\begin{aligned}\langle f'_{a,b}, \varphi \rangle &= -\langle f_{a,b}, \varphi' \rangle = -\int_{-\infty}^0 \log(-bx) \varphi'(x) dx - \int_0^\infty \log(ax) \varphi'(x) dx \\ &= -\int_{\mathbb{R}} \log|x| \varphi'(x) dx - \int_{-\infty}^0 \log(b) \varphi'(x) dx - \int_0^\infty \log(a) \varphi'(x) dx \\ &= -\int_{\mathbb{R}} \log|x| \varphi'(x) dx - \log(b) [\varphi(x)]_{-\infty}^0 - \log(a) [\varphi(x)]_0^\infty \\ &= -\int_{\mathbb{R}} \log|x| \varphi'(x) + \log\left(\frac{a}{b}\right) \varphi(0).\end{aligned}\tag{2}$$

For all $\varepsilon > 0$, we have

$$\begin{aligned}\int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \log|x| \varphi'(x) dx &= -\int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \frac{\varphi(x)}{x} dx + \left[\log|x| \varphi(x) \right]_{-\infty}^{-\varepsilon} + \left[\log|x| \varphi(x) \right]_\varepsilon^\infty \\ &= -\int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \frac{\varphi(x)}{x} dx + \log(\varepsilon)(\varphi(-\varepsilon) - \varphi(\varepsilon)).\end{aligned}$$

As

$$\lim_{\varepsilon \rightarrow 0} \varepsilon \log(\varepsilon) = 0,$$

and using (1)

$$\varphi(-\varepsilon) - \varphi(\varepsilon) = -2\varphi'(0)\varepsilon + O(\varepsilon^2),$$

we get

$$\lim_{\varepsilon \rightarrow 0} \log(\varepsilon)(\varphi(-\varepsilon) - \varphi(\varepsilon)) = 0,$$

which shows that

$$\begin{aligned}\int_{\mathbb{R}} \log|x| \varphi'(x) dx &= \lim_{\varepsilon \rightarrow 0} \int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \log|x| \varphi'(x) dx \\ &= \lim_{\varepsilon \rightarrow 0} \left(-\int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \frac{\varphi(x)}{x} dx + \log(\varepsilon)(\varphi(-\varepsilon) - \varphi(\varepsilon)) \right) \\ &= -\left\langle \text{v.p.} \frac{1}{x}, \varphi \right\rangle.\end{aligned}\tag{3}$$

Finally, using (2) and (3), we deduce that for all $\varphi \in \mathcal{D}(\mathbb{R})$, we have

$$\langle f'_{a,b}, \varphi \rangle = \left\langle \text{v.p.} \frac{1}{x}, \varphi \right\rangle + \log\left(\frac{a}{b}\right) \varphi(0).$$

In other words, we have established that

$$f'_{a,b} = \text{v.p.} \frac{1}{x} + \log\left(\frac{a}{b}\right) \delta_0.$$

Exercise 5. Let $\varphi \in \mathcal{D}(\mathbb{R})$ and $R > 0$ be such that $\varphi(x) = 0$ for all $|x| > R$. Then, we have

$$\begin{aligned}
T_n(\varphi) &= \int_{-R}^{\varepsilon_n^-} \frac{\varphi(x)}{x} dx + \int_{\varepsilon_n^+}^R \frac{\varphi(x)}{x} dx \\
&= \int_{-R}^{-\varepsilon_n^-} \frac{\varphi(x) - \varphi(0)}{x} dx + \int_{\varepsilon_n^+}^R \frac{\varphi(x) - \varphi(0)}{x} dx + \int_{-R}^{-\varepsilon_n^-} \frac{\varphi(0)}{x} dx + \int_{\varepsilon_n^+}^R \frac{\varphi(0)}{x} dx \\
&= \int_{-R}^{-\varepsilon_n^-} \frac{\varphi(x) - \varphi(0)}{x} dx + \int_{\varepsilon_n^+}^R \frac{\varphi(x) - \varphi(0)}{dx} - \varphi(0) \log\left(\frac{R}{\varepsilon_n^-}\right) + \varphi(0) \log\left(\frac{R}{\varepsilon_n^+}\right) \\
&= \int_{-R}^{-\varepsilon_n^-} \frac{\varphi(x) - \varphi(0)}{x} dx + \int_{\varepsilon_n^+}^R \frac{\varphi(x) - \varphi(0)}{dx} - \log\left(\frac{\varepsilon_n^+}{\varepsilon_n^-}\right) \varphi(0) \\
&\xrightarrow{n \rightarrow \infty} \int_{-R}^R \frac{\varphi(x) - \varphi(0)}{x} dx - \log(a) \varphi(0) \\
&= \left\langle \text{v.p.} \frac{1}{x} - \log(a) \delta_0, \varphi \right\rangle,
\end{aligned}$$

which shows that

$$\lim_{n \rightarrow \infty} T_n = \text{v.p.} \frac{1}{x} + \log(a) \delta_0 \quad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Exercise 6. Using the formula of jumps, as g is continuous in 0 and C^1 in \mathbb{R}^* , we deduce that $[g]' = [g'] = [H]$, where H is the Heaviside function. And we have already showed in class that $H' = \delta_0$, which completes the proof. We can also compute directly :

$$\langle Lg, \varphi \rangle = \langle g, \varphi'' \rangle = \int_0^\infty x \varphi''(x) dx = - \int_0^\infty \varphi'(x) dx = \varphi(0).$$

Exercise 7. We first check that $\Delta \log = 0$ in $\mathbb{R}^2 \setminus \{0\}$. Using polar coordinates, this is easy since

$$\Delta = \partial_r^2 + \frac{1}{r} \partial_r - \frac{1}{r^2} \partial_\theta^2.$$

Therefore we have

$$\begin{aligned}
\partial_r \log |x| &= \partial_r \log(r) = \frac{1}{r} \\
\partial_r^2 \log |x| &= -\frac{1}{r^2},
\end{aligned}$$

which shows that

$$\Delta \log |x| = \left(\partial_r^2 + \frac{1}{r} \partial_r - \frac{1}{r^2} \partial_\theta^2 \right) \log r = -\frac{1}{r^2} + \frac{1}{r} \left(\frac{1}{r} \right) + 0 = 0.$$

Integrating by parts, we get

$$\begin{aligned}
\int_{\mathbb{R}^2 \setminus \overline{B}_\varepsilon(0)} \log |x| \Delta \varphi(x) dx &= \int_{\mathbb{R}^2} \varphi(x) \Delta \log |x| dx + \int_{\partial(\mathbb{R}^2 \setminus \overline{B}_\varepsilon(0))} (\log |x| \partial_\nu \varphi - \partial_\nu(\log |x|) \varphi) dl \\
&= \int_{\partial B(0, \varepsilon)} ((\partial_r \log r) \varphi - \log r (\partial_\nu \varphi)) dl.
\end{aligned}$$

Beware of the sign change! The function φ is smooth, and since it is bounded in 0, we also have

$$\left| \int_{\partial B(0, \varepsilon)} \log r \partial_\nu \varphi \, dl \right| \leq \|\nabla \varphi\|_{L^\infty(\mathbb{R}^2)} |\log(\varepsilon)| \int_{\partial B(0, \varepsilon)} dl = 2\pi \varepsilon |\log(\varepsilon)| \|\nabla \varphi\|_{L^\infty(\mathbb{R}^2)} \xrightarrow[\varepsilon \rightarrow 0]{} 0.$$

On the other hand, as $x \rightarrow 0$, we have

$$\varphi(x) = \varphi(0) + O(\varepsilon),$$

which shows that

$$\int_{\partial B(0, \varepsilon)} (\partial_r \log r) \varphi \, dl = \int_{\partial B(0, \varepsilon)} \frac{\varphi(x)}{\varepsilon} \, dl = 2\pi \varphi(0) + O(\varepsilon) \xrightarrow[\varepsilon \rightarrow 0]{} 2\pi \varphi(0).$$

Finally, we get

$$\langle \Delta G, \varphi \rangle = \langle G, \Delta \varphi \rangle = \frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x| \Delta \varphi(x) \, dx = \frac{1}{2\pi} \lim_{\varepsilon \rightarrow 0} \int_{\mathbb{R}^2 \setminus \overline{B}_\varepsilon(0)} \log |x| \varphi(x) \, dx = \varphi(0),$$

which shows by definition that

$$\Delta G = \delta_0 \quad \text{dans } \mathcal{D}'(\mathbb{R}^2).$$